Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 360-367, 2022.
Article in English | WPRIM | ID: wpr-937237

ABSTRACT

Tropomyosin receptor kinase A (TrkA) protein is a receptor tyrosine kinase encoded by the NTRK1 gene. TrkA signaling mediates the proliferation, differentiation, and survival of neurons and other cells following stimulation by its ligand, the nerve growth factor.Chromosomal rearrangements of the NTRK1 gene result in the generation of TrkA fusion protein, which is known to cause deregulation of TrkA signaling. Targeting TrkA activity represents a promising strategy for the treatment of cancers that harbor the TrkA fusion protein. In this study, we evaluated the TrkA-inhibitory activity of the benzoxazole compound KRC-108. KRC-108 inhibited TrkA activity in an in vitro kinase assay, and suppressed the growth of KM12C colon cancer cells harboring an NTRK1 gene fusion.KRC-108 treatment induced cell cycle arrest, apoptotic cell death, and autophagy. KRC-108 suppressed the phosphorylation of downstream signaling molecules of TrkA, including Akt, phospholipase Cγ, and ERK1/2. Furthermore, KRC-108 exhibited antitumor activity in vivo in a KM12C cell xenograft model. These results indicate that KRC-108 may be a promising therapeutic agent for Trk fusion-positive cancers.

2.
Annals of Clinical Microbiology ; : 45-45, 2018.
Article in English | WPRIM | ID: wpr-715232

ABSTRACT

There was an error in the article, the names of manufacturers and countries of equipments in the Korean abstract were reversed.

3.
Annals of Clinical Microbiology ; : 12-19, 2018.
Article in English | WPRIM | ID: wpr-713358

ABSTRACT

BACKGROUND: Timely intervention in the treatment of bloodstream infection is important for prescription of appropriate antimicrobials. With prompt determination of the antimicrobial susceptibility of a causative agent, rapid antimicrobial susceptibility test (AST) can help select the appropriate antimicrobial therapy. This clinical study is for evaluation of the clinical performance of the QMAC-dRAST for rapid AST directly from positive blood culture (PBC)s with Gram-positive cocci. METHODS: A total of 115 PBC samples with Gram-positive organisms (76 Staphylococcus spp. and 39 Enterococcus spp.) were evaluated by the QMAC-dRAST system, and their pure culture isolates were evaluated by the MicroScan WalkAway (Beckman Coulter, USA) as the comparative AST system. Thirteen antimicrobial agents were included, and the agreement and discrepancy rates of the QMAC-dRAST system (Quantamatrix Inc., Republic of Korea) compared to the MicroScan WalkAway were calculated. To resolve discrepancies, the broth microdilution method was performed. RESULTS: The QMAC-dRAST system exhibited a categorical agreement rate of 94.9% (1,126/1,187) and an essential agreement rate of 98.3% (1,167/1,187). The QMAC-dRAST system yielded very major (false-susceptible) errors at 1.0% (5/485), major (false-resistant) errors at 1.3% (9/693), and minor errors at 4.0% (47/1,187) compared to the MicroScan WalkAway. The QMAC-dRAST system significantly eliminated 30 hours of total turnaround time by combination of direct inoculation of PBC and an image-based approach. CONCLUSION: The results of the QMAC-dRAST system were highly accurate. Thereby, the QMAC-dRAST may provide essential information to accelerate therapeutic decisions for earlier and adequate antibiotic treatment and patient management in clinical settings.


Subject(s)
Humans , Anti-Infective Agents , Bacteremia , Bioengineering , Clinical Study , Drug Resistance, Microbial , Enterococcus , Gram-Positive Cocci , Methods , Microbial Sensitivity Tests , Prescriptions , Staphylococcus
4.
Anatomy & Cell Biology ; : 91-100, 2014.
Article in English | WPRIM | ID: wpr-137046

ABSTRACT

Excessive immune responses induced by ischemia-reperfusion injury (IRI) are known to lead to necrotic and apoptotic cell death, and calcineurin plays a major role in this process. Calcineurin dephosphorylates the nuclear factor of activated T-cells (NFAT), permitting its translocation into the nucleus. As a result, calcineurin promotes the release of pro-inflammatory cytokines, such as tumor necrosis factor-alpha. The overproduction of pro-inflammatory cytokines causes renal cell death. Calcineurin activity is regulated by calpain, a cysteine protease present in the nucleus. Calpain-mediated proteolysis increases the phosphatase activity of calcineurin, resulting in NFAT dephosphorylation. This process has been studied in cardiomyocytes but its role in renal IRI is unknown. Thus, we examined whether calpain regulates calcineurin in renal tubule nuclei. We established an in vivo renal IRI model in mice and identified the protective role of a calcineurin inhibitor, FK506, in this process. Calcineurin is expressed in the nucleus, where it is present in its calpain-cleaved form. FK506 reduced nuclear expression of calcineurin and prevented calcineurin-mediated NFAT activation. Our study shows clearly that FK506 reduces calpain-mediated calcineurin activity. Consequently, calcineurin could not maintain NFAT activation. FK506 reduced renal cell death by suppressing the transcription of pro-inflammatory cytokine genes. This study provides evidence that FK506 protects against inflammation in a renal IRI mouse model. We also provided a mechanism of calcineurin action in the nucleus. Therefore, FK506 could improve renal function by decreasing calcineurin activity in both the cytoplasm and the nucleus of renal tubule cells.


Subject(s)
Animals , Mice , Calcineurin , Calpain , Cell Death , Cysteine Proteases , Cytokines , Cytoplasm , Inflammation , Myocytes, Cardiac , Proteolysis , Reperfusion Injury , T-Lymphocytes , Tacrolimus , Tumor Necrosis Factor-alpha
5.
Anatomy & Cell Biology ; : 91-100, 2014.
Article in English | WPRIM | ID: wpr-137040

ABSTRACT

Excessive immune responses induced by ischemia-reperfusion injury (IRI) are known to lead to necrotic and apoptotic cell death, and calcineurin plays a major role in this process. Calcineurin dephosphorylates the nuclear factor of activated T-cells (NFAT), permitting its translocation into the nucleus. As a result, calcineurin promotes the release of pro-inflammatory cytokines, such as tumor necrosis factor-alpha. The overproduction of pro-inflammatory cytokines causes renal cell death. Calcineurin activity is regulated by calpain, a cysteine protease present in the nucleus. Calpain-mediated proteolysis increases the phosphatase activity of calcineurin, resulting in NFAT dephosphorylation. This process has been studied in cardiomyocytes but its role in renal IRI is unknown. Thus, we examined whether calpain regulates calcineurin in renal tubule nuclei. We established an in vivo renal IRI model in mice and identified the protective role of a calcineurin inhibitor, FK506, in this process. Calcineurin is expressed in the nucleus, where it is present in its calpain-cleaved form. FK506 reduced nuclear expression of calcineurin and prevented calcineurin-mediated NFAT activation. Our study shows clearly that FK506 reduces calpain-mediated calcineurin activity. Consequently, calcineurin could not maintain NFAT activation. FK506 reduced renal cell death by suppressing the transcription of pro-inflammatory cytokine genes. This study provides evidence that FK506 protects against inflammation in a renal IRI mouse model. We also provided a mechanism of calcineurin action in the nucleus. Therefore, FK506 could improve renal function by decreasing calcineurin activity in both the cytoplasm and the nucleus of renal tubule cells.


Subject(s)
Animals , Mice , Calcineurin , Calpain , Cell Death , Cysteine Proteases , Cytokines , Cytoplasm , Inflammation , Myocytes, Cardiac , Proteolysis , Reperfusion Injury , T-Lymphocytes , Tacrolimus , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL